
Grail+

CS 4490Z Undergraduate Thesis Report

Peter Goodman

March 29, 2011

Supervisor: Prof. Sheng Yu

Acknowledgments

I am grateful to my supervisor, Professor Sheng Yu, for his academic guidance over the past three years.

I owe my deepest grattitude to my parents and family for supporting me in my undergraduate studies.

Lastly, I would like to thank my partner Helen for putting up with all of the time I spent debugging the
software of this project.

Peter Goodman

2

Contents

List of Abbreviations 5

1 Introduction 6

2 History 7

3 Goals and Motivations 8

4 Architectural Overview 9
4.1 Formal Language Template Library . 9

4.1.1 CFG, NFA, PDA and their Support Template Classes 9
4.1.2 Helper Template Classes . 9

4.2 Grail+ . 9
4.2.1 Algorithms . 10
4.2.2 Tools . 10

5 Command-Line Tools 11
5.1 cfg-parse . 12
5.2 cfg-to-cnf . 14
5.3 cfg-to-gnf . 15
5.4 cfg-to-pda . 15
5.5 pda-intersect-nfa . 16
5.6 pda-to-cfg . 16

6 File Formats 18
6.1 CFGs . 18
6.2 �-NFAs . 19
6.3 �-NPDAs . 20

7 FLTL API 21
7.1 CFG<AlphaT> . 21
7.2 NFA<AlphaT> . 24
7.3 PDA<AlphaT> . 27

8 Implementation Details 31
8.1 Reference Counting . 31
8.2 CFG Production Patterns . 32
8.3 Generators . 37

8.3.1 CFG Generators . 37
8.3.2 �-NFA Generators . 39
8.3.3 �-NPDA Generators . 42

8.4 Deviations from Design Report . 44

3

Contents

9 Testing 45

10 Results 46

Bibliography 46

Appendix: Converting an �-NPDA to a CFG 48

4

List of Abbreviations

API Application programming interface.

CFG Context-free grammar.

CLI Command-line interface.

EDSL Embedded domain-specific language.

�-CNF Chomsky normal form with additional support for empty languages.

�-GNF Greibach normal form with additional support for empty languages.

�-NFA Non-deterministic finite automaton with �-transitions.

�-NPDA Non-deterministic pushdown automaton with �-transitions.

FLO Formal language object.

FLTL Formal language template library.

G++ The GNU compiler collection’s C++ compiler.

ICPC Intel C++ compiler.

LLVM Low-level virtual machine.

VC++ Microsoft Visual C++ compiler.

5

1 Introduction

Grail+ is a system for manipulating formal languages. It operates on three types of formal language
objects (FLOs): context-free grammars (CFGs), non-deterministic pushdown automata (�-NPDAs), and
non-deterministic finite automata (�-NFAs).

Grail+ is implemented as an application framework on top of the formal language template library (FLTL),
a C++ library explicitly developed for use by Grail+.

Grail+ includes implementations of the following algorithms over FLOs:

• Earley’s algorithm for testing word membership in the language generated by a CFG. [3, 1]

• Removal of �-productions from a CFG. [10]

• Removal of unit productions from a CFG. [10]

• Removal of unreachable and non-generating productions from a CFG. [5]

• Removal of left-recursion from a CFG. [8]

• Removal of �-transitions from an �-NFA. [10]

• Conversion of a CFG into a form where the right-hand side of each production has no more than
two symbols.

• Conversion of a CFG into CNF. [10]

• Conversion of a CFG into GNF. [4]

• Conversion of a CFG into an �-NPDA. [10]

• Conversion of a �-NPDA into a CFG.[10]

• Intersection of a �-NPDA with a CFG. [10]

Grail+ exposes six of the above algorithms as command-line tools.

This document gives an overview of the features of the newest version of Grail+ as well as some imple-
mentation details of some of the interesting features of the FLTL.

6

2 History

Grail+ has existed in numerous forms since the 1990s. Originally, Grail+ was designed to be a set of
command-line tools for manipulating regular languages. Since then, extensions for manipulating Mealy
machines, alternating finite automata (AFAs), and CFGs have been added by various third parties.

Unfortunately, disorganization has lead to the fragmentation of the original Grail+ source code. Old
versions of Grail+ are independently maintained by students at various different universities. Further, the
foundations of prior versions of Grail+ have seen little maintenance since the new millenium. As a result,
the various branches of the prior versions of Grail+ are messes of poorly structured C++ classes that have
been of diminishing usefulness to the academic community.

This is not to say that prior versions of Grail+ are unusable; however, they are increasingly difficult to
use. In order to compile versions of Grail+ based on the original source code using modern compilers1, one
must disable many of their error-detection systems. This is in stark contrast with one the original design
goals of Grail+: the C++ programming language was chosen as the implementation language because of
stronger/stricter guarantees that C++ compilers can make. Further, it is difficult to develop new tools
for prior versions of Grail+ as expert C++ knowledge is required to understand the many implementation
details of the underlying Grail+ data structures.

The software developed for this project represents a re-implementation of Grail+ and shares no code with
any prior versions of Grail+.

1
G++, Clang++, VC++, ICPC.

7

3 Goals and Motivations

This version of the Grail+ project had the following goals:

1. Separation of concerns: algorithms should be independent of the formal language data structures
on which they operate, and command-line tools should be independent from the algorithms powering
them. This goal was met by the separation of the FLTL from Grail+ and by the distinction of
command-line tools and algorithms within Grail+. The motivation for this goal came from prior
versions of Grail+: all algorithms were implemented as methods of one of the formal language data
structures. This resulted in very tight coupling between data structures and cluttered the public
APIs of all of the data structures.

2. Declarative over imperative: APIs that allow the programmer to express an operation should
be preferred to ones that require that the programmer describe how to perform that operation. This
goal is embodied in the pattern matching meta-programming facilities in the FLTL. The motivation
for this goal came from prior versions of Grail+: by virtue of being methods of classes, each algorithm
had access to the internals of their respective data structures. As a result, algorithms depended on
the implementation details of every data structure involved in a particular computation.

3. Homogeneity: from the outside, Grail+ has always been a tool for the symbolic manipulation of
formal languages. From the inside, the intention of a given piece of code in prior versions of Grail+

was obscured by implementation details, memory management, traversal of data, and the concerns
for the memory used to represent various data structures. The new version of Grail+, by means
of the FLTL, had the goal of enabling symbolic manipulations of FLOs at the programming level.
This goal is an extension of the first two goals, and was met by exposing opaquely typed objects to
programmers, creating a declarative API, and supporting powerful and expressive pattern matching
facilities. For example, CFGs have opaque types for terminals, non-terminals, symbols, symbol
strings, and productions. This goal was motivated by the second goal, declarative over imperative,
for the purpose of making it easier for programmers to express and implement algorithms.

4. Genericity: this goal is shared by all versions of Grail+ and was one of the motivating factors for
choosing C++ as the implementation language of Grail+. C++ has a template system which allows
one to create parameterizable code that will work for any set of parameters that support the desired
operations on the types/values of those parameters. Grail+ goes beyond previous versions insofar
as it can parameterize basic types1 as well as more complex types through a system of type traits.

5. Performance: the purpose of Gail+ has always been to symbolically manipulate FLOs. As a
result, Grail+ has never been and likely never will be a leader where performance is concerned.
Prior versions of Grail+ made use of naïve data structures for representing sets and vectors. As
a result, performance suffered for large input sizes. Anecdotal evidence suggests that the new
Grail+ has poor performance where expected (e.g. converting a CFG into GNF), but acceptable
and sometimes excellent performance where it matters (e.g. converting a CFG into CNF, testing
language membership).

1
int, char, char *, etc.

8

4 Architectural Overview

4.1 Formal Language Template Library

The FLTL is composed of three primary template classes (CFG, NFA, PDA), their support template classes,
and helper template classes.

4.1.1 CFG, NFA, PDA and their Support Template Classes

Each primary template class supports operations that affect the state of instances of that template class.
Each primary template class also exposes certain support template classes as opaque types1, where in-
stances of these types are immutable.

The primary and support template classes are separated out into their logical components (e.g. the
components of a CFG are symbols, terminals, non-terminals, symbol strings, and productions) to make
it easier to understand what operations a given piece of code performs. Unfortunately, the interactions
between the various support template classes causes high coupling. The downside is that this coupling
increases the difficulty of maintaining the core data structures. The upside of this coupling is that, from the
algorithm writer’s perspective, the implementation of an FLO appears cohesive and interactions between
the various template classes involved work as expected.

More information on these template classes can be found in the FLTL API chapter.

4.1.2 Helper Template Classes

The FLTL includes a number of helper template classes. These template classes are used internally within
the FLTL. In general, the purpose of the helper classes is to manage memory in some way. For example,
BlockAllocator allocates pools of objects, StorageChain allows one to specify dependencies between
statically allocated objects so that object destruction of static memory is well-ordered, and UnsafeCast

allows one to convert memory of one type into memory of another type in a way that C++ compilers will
accept, even with the strictest referential transparency warning/error settings enabled.

4.2 Grail+

Grail+ contains algorithm implementations as well as tools that expose some of the aforementioned
algorithms to the command-line.

1
For example, CFG exposes production_type as fltl::CFG<AlphaT>::production_type for some basic type or type trait

AlphaT. Each exposed type is actually an instantiation of a support template type. production_type is the type

fltl::cfg::OpaqueProduction<AlphaT>, where fltl::cfg is the namespace containing all support template classes for

the CFG template class.

9

4 Architectural Overview

4.2.1 Algorithms

Algorithms are template classes that expose a static run method. Algorithm classes operate on FLTL
data structures (CFG, NFA, PDA). The primary FLTL data structures tend to be “top heavy” and so the
run method does not usually return any value. Instead, the object to be returned from an algorithm is
passed by reference to that algorithm as a formal parameter to the run method.

Algorithms are not required to be pure; however, it is encouraged. Some algorithms have logging mech-
anisms to report information back to the user. Also, some algorithms modify the state of their inputs.
Importantly, all of the current algorithms make the guarantee that if their input is modified, the language
generated/accepted by their input is not modified. In future, stricter restrictions can be placed on the
behaviour of an algorithm with respect to its inputs.

4.2.2 Tools

Grail+ tools all share the same structure. Any tool that does not meet the structure will not compile.
Tools are required to expose the following public API:

• A static TOOL_NAME member with the name of the tool. This name must uniquely identify a given
tool so that the main program is able to dispatch to the proper tool. For example, the tool template
class CFG_TO_CNF has "cfg-to-cnf" as its TOOL_NAME.

• A static method declare that takes in a reference to an instance of the class CommandLineOptions
and a Boolean flag specifying whether or not the help information for the given tool is being dis-
played. This method is responsible for declaring which command-line options a tool accepts. When
requesting the help information of a tool, it is undesirable to do extensive checking of the options,
hence the Boolean flag.

• A static method help which, when called, prints out the help information for its tool. This informa-
tion contains a short description of the tool as well as the command-line options supported by the
tool. The information outputted by help should be specific to the tool.

• A static method main that takes in a reference to an instance of the class CommandLineOptions.
main is responsible for handling all user input, reading descriptions of FLOs from files and importing
them into memory, running algorithms on the FLOs, and the outputting the results back to the user.

The structure of tools was motivated by the command-line interface (CLI) of Valgrind [9], a tool that was
used extensively in the testing of Grail+. At first, this structure appears unusual; however, it allows for:

• separate definitions of global and local command-line options;

• conditional delaying of general error checking of command-line options;

• delaying of specific error checking of command-line options until the program is committed to running
a tool, and;

• no external dependencies for managing help information.

The CLI of Grail+ is meant to be flexible enough to provide a good user experience and to move error-
checking to when and where it is needed. As such, a first-time user of Grail+ can quickly learn to use the
CLI, even if their first action is to run the executable without any arguments or inputs.

10

5 Command-Line Tools

Grail+ exposes several algorithms over FLOs as command-line tools. Each tool is accessible through a
single executable file. The following are some example usages of some of Grail+’s tools:

./grail --tool=cfg-to-cnf --verbose ./math.cfg

./grail --tool=cfg-parse --verbose --predict ./math.cfg --stdin

./grail --tool=pda-intersect-nfa --help

The following command-line options apply to all Grail+ tools:

Requires
Value

Accepts
Value

Optional Description

--help

-h

✕ ✓* By default, this option displays help
information related to all of Grail+. The help
information includes this list of global
command-line options. If a tool is selected
using --tool then help information related to
the specific tool is also shown.

--test ✕ ✓* This option causes Grail+ to run its test suite.

After compiling Grail+, one’s first action
should be to run Grail+ with this
command-line option. The purpose of the test
suite is to test the basic functionality of the
FLTL.

11

5 Command-Line Tools

Requires
Value

Accepts
Value

Optional Description

--tool ✓ ✓ ✓* Selects a specific tool to run.

Grail+ currently supports six tools:

• cfg-parse,

• cfg-to-cnf,

• cfg-to-gnf,

• cfg-to-pda

• pda-intersect-cfg

• pda-to-cfg

For example, if one wanted to select
cfg-parse, the one would use either
--tool=cfg-parse or --tool cfg-parse.

--tools ✕ ✓* Display a list of the tools supported by the
currently compiled version of Grail+.

--verbose

-v

✕ ✓ Print out logging information to the user. The
information printed out is printed to stderr.
The information printed out is often helpful for
determining the progress of a tool and also for
determining the sizes of the inputs and outputs
of a tool.

--version ✕ ✓* Displays the current version of Grail+.

While all of the global command-line options are marked as optional, at least one of the above options
marked with a “*” is always required.

Grail+ supports the following tools, selectable using the --tool command-line option, and their respective
command-line options.

In the following sections, positional arguments to command-line tools are denoted by <#>
1, where #

represents the position of the argument and <0> is the first positional argument. Positional (<#>) and
keyword (starting with - or --) arguments can be interspersed. Positional arguments are ordered whereas
keyword arguments are not.

5.1 cfg-parse

This tool takes as input the name of a file containing a description of a CFG and the name of a file
containing the word to parse according to the aformentioned CFG. If the --stdin option is specified then

1
Note: <#> is notation for describing positional arguments within this report. Actual position arguments to Grail

+
are not

surrounded with < and >.

12

5 Command-Line Tools

the word to parse must be supplied by the user at the command line. The output of the program is "Yes."
if the word can be genertated by the input CFG, and "No." if the input word cannot be generated.

Grail+ has no understanding of the lexical rules of the alphabet symbols of the words generated by the
grammars that it manipulates. As such, it is up to the user to delimit the alphabet symbols of a word
by line breaks. That is, any sequence of bytes—including all non-null ASCII characters and all valid
UTF-8 codepoints—on a non-empty line is seen as a single alphabet symbol. At first this appears tedious;
however, it ensures that Grail+

• never projects assumptions valid for one language to other languages where the assumptions are
invalid2.

• never has to deal with context-sensitive disambiguations of strings of characters3.

Grail+ supports variable terminals (also known as dynamic terminals). From a programming perspective,
there is no distinction between a variable terminal and a normal terminal. From a formatting perspective,
a variable terminal is named in the same way as a variable but has no productions. From the perspective
of the cfg-parse tool, any alphabet symbol that isn’t recognized as a terminal of the grammar can be
assigned4 to any variable terminal of the grammar.

For example, A and B are variable terminals in the following grammar:

S → A B

When used as the input CFG to cfg-parse, cfg-parse will report "Yes." if and only if its input file has
only two non-empty lines.

In addition to Grail+’s global command-line options, the cfg-parse tool accepts the following command-
line options:

Requires
Value

Accepts
Value

Optional Description

2
For example, insignificant whitespace in the C programming language versus significant whitespace in the Python program-

ming language.
3
For example, the sequence of characters +++ can be converted into at least five distinct sequences of alphabet symbols in

the C programming language, many of which are illegal depending on the surrounding context.
4
Variable terminal assignments are mutually independent. That is, the same string can be assigned to different variable

terminals throughout the parsing process, even if a past assignment has succeeded.

13

5 Command-Line Tools

Requires
Value

Accepts
Value

Optional Description

--predict ✕ ✓ This tells the tool to compute FIRST (v) for
every variable v of the input CFG. FIRST (v)
is defined as the set of all terminals that can
appear as the first terminal in any string
generated by v.

Computing the FIRST sets can be a slow
operation, especially for large grammars with a
lot of left recursive productions and nullable
productions. However, in many cases,
computing the FIRST sets speeds up the
parsing process as it allows the parser to ignore
any production that provably won’t appear in
the final derivation of the string.

--stdin ✕ ✓* This option instructs the tool to read the input
word from stdin instead of taking a file name
as the second positional command-line
argument.

<0> ✕ The name of a file containing a properly
formatted description of a CFG.

<1> ✕* The name of a file containing the “word” to
parse, where each alphabet symbol of the word
appears on a new line in the file. If --stdin is
specified then this positional command-line
argument is not used.

5.2 cfg-to-cnf

This tool takes as input the name of a file containing a description of a CFG and outputs a description
of a CFG that is in �-CNF. Specifically, every production of a grammar in �-CNF must be in one of the
following forms:

γ → α β

γ → t

Where γ, α, and β are arbitrary non-terminals and t is an arbitrary terminal. In addition, if S is the start
variable of a CFG in �-CNF then S → � is a valid production form if and only if S generates the empty
string in the original grammar.

In addition to Grail+’s global command-line options, the cfg-to-cnf tool accepts the following command-
line options:

14

5 Command-Line Tools

Requires
Value

Accepts
Value

Optional Description

--stdin ✕ ✓* This option instructs the tool to read the input
CFG from stdin instead of taking a file name
as a positional command-line argument.

<0> ✕* The name of a file containing a properly
formatted description of a CFG. If --stdin is
specified then this positional command-line
argument is not used.

5.3 cfg-to-gnf

This tool takes as input the name of a file containing a description of a CFG and outputs a description
of a CFG that is in �-GNF. Specifically, every production of a grammar in �-GNF must have the form
α → t γ, where α is an arbitrary non-terminal, t is an arbitrary terminal, and γ is a sequence of zero
or more non-terminals. In addition, if S is the start variable of a CFG in �-GNF then S → � is a valid
production form if and only if S generates the empty string in the original grammar.

In addition to Grail+’s global command-line options, the cfg-to-gnf tool accepts the following command-
line options:

Requires
Value

Accepts
Value

Optional Description

--stdin ✕ ✓* This option instructs the tool to read the input
CFG from stdin instead of taking a file name
as a positional command-line argument.

<0> ✕* The name of a file containing a properly
formatted description of a CFG. If --stdin is
specified then this positional command-line
argument is not used.

This tool performs poorly in many cases. As such, for large grammars, this tool should not be seen as a
practical method of converting a CFG into �-GNF.

5.4 cfg-to-pda

This tool takes as input the name of a file containing a description of a CFG and outputs a description of
a �-NPDA that accepts the language generated by the input CFG.

In addition to Grail+’s global command-line options, the cfg-to-pda tool accepts the following command-
line options:

15

5 Command-Line Tools

Requires
Value

Accepts
Value

Optional Description

--stdin ✕ ✓* This option instructs the tool to read the input
CFG from stdin instead of taking a file name
as a positional command-line argument.

<0> ✕* The name of a file containing a properly
formatted description of a CFG. If --stdin is
specified then this positional command-line
argument is not used.

5.5 pda-intersect-nfa

This tool takes as input the name of a file containing the description of an �-NPDA and the name of a
file containing the description of an �-NFA and outputs an �-NPDA that accepts the intersection of the
languages accepted by the input �-NPDA and the input �-NFA.

In addition to Grail+’s global command-line options, the pda-intersect-nfa tool accepts the following
command-line options:

Requires
Value

Accepts
Value

Optional Description

<0> ✕ The name of a file containing a properly
formatted description of an �-NPDA.

<1> ✕ The name of a file containing a properly
formatted description of an �-NFA.

5.6 pda-to-cfg

This tool takes as input the name of a file containing the description of an �-NPDA and outputs a
description of a CFG that generates the language accepted by the input �-NPDA.

In addition to Grail+’s global command-line options, the pda-to-cfg tool accepts the following command-
line options:

Requires
Value

Accepts
Value

Optional Description

--stdin ✕ ✓* This option instructs the tool to read the input
�-NPDA from stdin instead of taking a file
name as a positional command-line argument.

16

5 Command-Line Tools

Requires
Value

Accepts
Value

Optional Description

<0> ✕* The name of a file containing a properly
formatted description of an �-NPDA. If
--stdin is specified then this positional
command-line argument is not used.

It should be noted that a grammar produced by this tool is likely to perform poorly when used as an input
to the cfg-parse tool as the grammar is likely to be highly ambiguous—especially if the input �-NPDA
was produced by the cfg-to-pda tool.

17

6 File Formats

6.1 CFGs

The file format for Grail+ CFGs was influenced by Yacc [7], Java CUP [6], and the Natural Language
Toolkit (NLTK) [2]. The file format can be described by a regular language; however, it is presented here
as a CFG. Terminals are denoted using a teletyped font. New lines (\n) are the only form of significant
whitespace in the CFG format.

CFG → ProductionList

ProductionList → Y accProduction ProductionList

→ NLTKProduction ProductionList

→ \n
∗ ProductionList

→ �

Y accProduction → NonTerminal \n
∗
: \n

∗ String \n
∗ (| \n

∗ String)∗ \n
∗
;

NLTKProduction → NonTerminal -> SingleLineString \n

→ NonTerminal => SingleLineString \n

String → \n
∗
NonTerminal String

→ \n
∗
Terminal String

→ \n
∗
VariableTerminal String

→ \n
∗
epsilon String

→ \n
∗ String

→ �

SingleLineString → NonTerminal SingleLineString

→ Terminal SingleLineString

→ VariableTerminal SingleLineString

→ epsilon SingleLineString

→ �

In the above grammar, the NonTerminal terminal maps to the regular language generated by the regular
expression ([a − ZA − Z0 − 9_]+)|($[0 − 9]+). The range of non-terminals identifiers generated by the
sub-expression ($[0− 9]+) represents automatically generated non-terminals.

In the above grammar, the VariableTerminal maps to the same language as NonTerminal. This ambiguity
is resolved by doing two passes over every CFG description: the first pass looks for syntax errors and collects
all symbols that appear to the left of a :, ->, or => symbol and marks those as being represented by the
NonTerminal terminal.

18

6 File Formats

In the above grammar, Terminals are delimited by a a delimiter string dn for n ≥ 1 and d ∈ {", ’} where
n is an odd number. The terminal is a sequence of zero-or-more valid UTF-8 codepoints delimited on both
sides by dn. If n = 1 then embedding d within a terminal requires that one must escape d by prefixing it
with a \, i.e. \d. However, for n > 1, one can embed up to n− 1 consecutive copies of d within the string
without needing any additional escape characters.

Finally, in the above grammar, epsilon is represented by itself.

Grail+ automatically ignores C-style comments1, C++-style comments2, Python-style comments3, Yacc-
style declarations4, Yacc-style code blocks5, and Java CUP-style code blocks6 in the CFG descriptions.
This allows one to annotate CFG descriptions with useful information, as well as for Grail+ to operate
on grammars meant for existing tools with only minimal modifications.

By default, the variable of the first production encountered is set to be the start variable of the grammar.

6.2 �-NFAs

The file format for �-NFAs is the same as that of prior versions of Grail+, with the exception that the
symbol delimiter7 is fixed one of {", ’}, with the same rules applying to �-NFA symbols as does CFG
terminals. As with the CFG file format, new lines are signifcant, and are delimited by the terminal \n.

NFA → TransitionList

TransitionList → Transition \n TransitionList

→ \n
∗ TransitionList

→ �

Transition → State epsilon State

→ State Symbol State

→ (START) |- State

→ State -| (FINAL)

In the above grammar, State represents an arbitrary natural number; epsilon, (START), (FINAL), |-,
and -| represents themselves; and Symbol represents the same language represented by the Terminal

terminal from the CFG file format.

1
/* ... */

2
// ...

3
...

4
%...

5
%{ ... %}

6
{: ... :}

7
The symbol delimiters are a programmer-configurable setting in prior versions of Grail

+
and are limited to two single

ASCII characters: left and right delimiters, respectively.

19

6 File Formats

6.3 �-NPDAs

The file format for �-NPDAs is backward compatible with the format for �-NFAs. That is, an �-NFA
description can be used anywhere that an �-NPDA is expected.

PDAA → TransitionList

TransitionList → Transition \n TransitionList

→ \n
∗ TransitionList

→ �

Symbol → Symbol

→ epsilon

Transition → State epsilon State OptStack

→ State Symbol State OptStack

→ (START) |- State

→ State -| (FINAL)

OptSymbol → Symbol

→ �

OptStack → �

→ , OptSymbol

→ , OptSymbol / OptSymbol

The above grammar is the same as that of �-NFAs, with the addition of the OptStack and OptSymbol
variables used for describing the stack manipulations of an �-NPDA transition.

20

7 FLTL API

The following sections include the public APIs of the primary FLTL template classes. The following
sections do not include the APIs of the various supporting template classes of the primary template
classes.

7.1 CFG<AlphaT>

Method Description

add_production Adds a production to the CFG. Two parameters are always
required for this method. The first parameter always has
the type variable_type. The second parameter can have
any one of variable_type, symbol_type,
symbol_string_type, terminal_type, or
production_builder_type types.

This method will not add a production to the grammar if
the production already exists. As such, the value returned
by two invocations to num_productions—one before and
one after adding a production to a grammar—could
possibly by the same.

The usage of production_builder_type as the type of the
second parameter to add_production is encouraged when
the symbol strings of a production are being constructed
from an arbitrary number of components.

add_variable Creates a new, automatically named variable and returns a
value of type variable_type that can be used to operate
with that variable. Variables created by add_variable are
given names of the form $([0− 9]+). add_variable
guarantees that the numeric component of the name of the
variable created will be greater than the numeric
components of all other other automatically named
variables.

add_variable_terminal Adds a variable terminal to the grammar with an
automatically generated name.

epsilon Returns an empty symbol string.

has_start_variable Returns true if the grammar has a start variable, false
otherwise.

21

7 FLTL API

Method Description

has_terminal Returns true if the grammar has a terminal whose value is
the same as the value passed in as a parameter.

For example, if AlphaT = char then has_terminal(’a’)

will return true if ’a’ is a terminal of the grammar.

is_variable_terminal Returns true if a value of type terminal_type represents a
variable terminal and false if it represents a normal
terminal.

get_alpha Returns the alphabetic value of a value of type
terminal_type.

For example, get_alpha(get_terminal(’a’)) = ’a’.

get_name Returns the string representation of the name of a variable.

For example,
get_name(get_variable("START")) = "START".

get_start_variable Returns a value of type variable_type that corresponds to
the start variable of the grammar.

If the grammar has no start variable then the behavior is
undefined. In debug mode, this behavior is checked using
an assertion.

get_terminal Returns a value of type terminal_type corresponding to
the terminal represented by some alphabet type. If no
terminal with the alphabetic value exists then one is
created.

get_variable Returns a value of type variable_type for some named
variable. If no variable with the specified name exists then
one is created.

get_variable_symbol Returns a value of type symbol_type for some named
symbol.

If the named symbol exists as a variable then the symbol
returned corresponds to a variable.

If the named symbol exists as a variable terminal then the
symbol returned corresponds to a variable terminal.

If the name is not known by the grammar then a named
variable terminal is created and returned.

num_productions Returns the number of productions in the grammar.

num_terminals Returns the number of terminals in the grammar. This
includes variable terminals.

22

7 FLTL API

Method Description

num_variables Returns the number of variables in the grammar.

num_variables_capacity Returns the total capacity for variables in the grammar.
By default, an arbitrary total ordering is imposed on
grammar variables. As such, when variables are deleted,
they correspond to “holes” in the ordering that can then
re-filled when new variables are added. It is often useful to
take advantage of the ordered nature and when doing so,
knowing the total number of possible variables is imporant.

num_variable_terminals Returns the number of variable terminals.

remove_production Removes a production from the grammar.

remove_variable Removes a variable and its productions from the grammar.

This has the effect of removing all productions of the form
V → αAβ where A is the variable being removed, V is an
arbitrary variable, and α and β are arbitrary strings of
terminals and non-terminals/variables.

If, in the process of removing related productions, all
productions on some variable V are removed then the
variable V will also be removed.

search Return a value of type generator_type that is capable of
performing some form of pattern-matching search over the
objects of a CFG.

See section 8.3.1 for more information on how to use this
method.

set_start_variable Change or initialize the start variable of a grammar.

unsafe_remove_variable Removes a variable and its productions from the grammar.
This does not, however, go look for related productions.

As well as the above methods, CFG<AlphaT> exposes the following types:

alphabet_type The underlying type used to represent terminals.

symbol_type Represents an arbitrary terminal or non-terminal/variable of the grammar.

terminal_type Represents an arbitrary terminal of the grammar.

variable_type Represents an arbitrary non-terminal/variable of the grammar.

symbol_string_type Represents a string of zero or more symbols (symbol_type).

production_type Represents an arbitrary production of the grammar.

production_builder_type Represents a symbol buffer for use when constructing productions.

23

7 FLTL API

pattern_type Represents an arbitrary production pattern. See section §8.2 for more information on
production patterns.

generator_type Represents an arbitrary generator over objects known to the grammar. See section §8.3
for more information on generators.

7.2 NFA<AlphaT>

Method Description

add_accept_state Takes in a value of type state_type and sets the state
represented by that value to be an accepting state in the
automaton.

add_state Create and return a new state.

add_start_state Takes in a value of type state_type and sets the state
represented by that value to be a start state in the
automaton.

By default, there is always one start start. There can only
ever be one true start state.

Additional start states are added by inserting �-transitions
from the current start to those “pretend” start states.

Thus, states added as start states by this method are not
true start states; however, they behave as if they were. This
function embodies the allowance of multiple start states in
prior versions of Grail+. To actually change the single start
state of an automaton, one must use set_start_state.

add_transition Add a transition between two states. The transition added
is returned as a value of type transition_type.

Note: duplicate transitions are not added.

epsilon Returns a value of type symbol_type that can be used
when representing no input on an �-transition.

get_alpha Returns the alphabetic value of some symbol.

For example, if AlphaT = char then
get_alpha(get_symbol(’a’)) = ’a’.

Note: get_alpha(epsilon()) is an illegal operation.

get_start_state Returns the start state of the automaton as a value of type
state_type.

24

7 FLTL API

Method Description

add_accept_state Takes in a value of type state_type and sets the state
represented by that value to be an accepting state in the
automaton.

add_state Create and return a new state.

add_start_state Takes in a value of type state_type and sets the state
represented by that value to be a start state in the
automaton.

By default, there is always one start start. There can only
ever be one true start state.

Additional start states are added by inserting �-transitions
from the current start to those “pretend” start states.

Thus, states added as start states by this method are not
true start states; however, they behave as if they were. This
function embodies the allowance of multiple start states in
prior versions of Grail+. To actually change the single start
state of an automaton, one must use set_start_state.

get_symbol Returns a symbolic representation of an alphabet symbol.
The alphabet symbol is added into the input alphabet of
the automaton if it is not yet present.

is_accept_state Returns true if a given state is an accepting state of the
automaton, and false otherwise.

num_accept_states Returns the number of accepting states of the automaton.

num_states Returns the number of states. This includes accepting
states.

num_states_capacity Returns the total capacity for states in this automaton. An
arbitrary total order is imposed on all states of the
automaton. When states are removed1, this results in
“holes” in the ordering that can be filled by new states.

It is often convenient to know the maximum possible
number of states in the automaton as the total ordering is
implemented in terms of the natural numbers.

num_symbols Returns the number of input symbols in this automaton’s
alphabet.

Note: � is considered a meta-symbol, despite having type
symbol_type, and is not counted in number returned by
this method.

1
Currently, states cannot be removed; however, this function exists in anticipation of the ability to remove states.

25

7 FLTL API

Method Description

add_accept_state Takes in a value of type state_type and sets the state
represented by that value to be an accepting state in the
automaton.

add_state Create and return a new state.

add_start_state Takes in a value of type state_type and sets the state
represented by that value to be a start state in the
automaton.

By default, there is always one start start. There can only
ever be one true start state.

Additional start states are added by inserting �-transitions
from the current start to those “pretend” start states.

Thus, states added as start states by this method are not
true start states; however, they behave as if they were. This
function embodies the allowance of multiple start states in
prior versions of Grail+. To actually change the single start
state of an automaton, one must use set_start_state.

num_transitions Returns the number of transitions in the automaton.

remove_accept_state Removes a state from the set of accepting states.

remove_transition Removes a transition from the automaton. This does not
affect states. As such, it is possible that this operation
results in orphaned states.

search Return a value of type generator_type that is capable of
performing some form of pattern-matching search over the
objects of an �-NFA.

See section 8.3.2 for more information on this method.

set_start_state Change the current start state. This will not affect, nor will
it redirect any �-transitions added in as a result of prior
invocations of add_start_state.

As well as the above methods, NFA<AlphaT> exposes the following types:

alphabet_type The underlying type used to represent input symbols.

state_type Represents an arbitrary state of an �-NFA.

symbol_type Represents an arbitrary input symbol of an �-NFA.

transition_type Represents an arbitrary transition in an �-NFA.

generator_type Represents a generator over objects known to the NFA<AlphaT> class. See section §8.3
for more information on generators.

26

7 FLTL API

7.3 PDA<AlphaT>

Method Description

add_accept_state Takes in a value of type state_type and sets the state
represented by that value to be an accepting state in the
automaton.

add_state Create and return a new state.

add_stack_symbol Adds an automatically named symbol to the automaton’s
stack alphabet. The symbol created is returned as a value
of type symbol_type.

add_start_state Takes in a value of type state_type and sets the state
represented by that value to be a start state in the
automaton.

By default, there is always one start start. There can only
ever be one true start state.

Additional start states are added by inserting �-transitions
from the current start to those “pretend” start states.

Thus, states added as start states by this method are not
true start states; however, they behave as if they were. This
function embodies the allowance of multiple start states in
prior versions of Grail+. To actually change the single start
state of an automaton, one must use set_start_state.

add_transition Add a transition between two states. The transition added
is returned as a value of type transition_type.

epsilon Returns a value of type symbol_type that can be used
when representing no input on an �-transition.

get_alpha Returns the alphabetic value of some symbol.

For example, if AlphaT = char then
get_alpha(get_symbol(’a’)) = ’a’.

Note: get_alpha(epsilon()) is an illegal operation.

get_name Get the name of a symbol that is primarily in the
automaton’s stack alphabet. If the symbol is in both the
input alphabet and the stack alphabet then it is considered
to be primarily in the input alphabet.

For example,
get_name(get_stack_symbol("FOO")) = "FOO", and
get_name(epsilon()) = "epsilon".

27

7 FLTL API

Method Description

add_accept_state Takes in a value of type state_type and sets the state
represented by that value to be an accepting state in the
automaton.

add_state Create and return a new state.

add_stack_symbol Adds an automatically named symbol to the automaton’s
stack alphabet. The symbol created is returned as a value
of type symbol_type.

add_start_state Takes in a value of type state_type and sets the state
represented by that value to be a start state in the
automaton.

By default, there is always one start start. There can only
ever be one true start state.

Additional start states are added by inserting �-transitions
from the current start to those “pretend” start states.

Thus, states added as start states by this method are not
true start states; however, they behave as if they were. This
function embodies the allowance of multiple start states in
prior versions of Grail+. To actually change the single start
state of an automaton, one must use set_start_state.

get_alphabet_symbol Get a symbolic representation for a symbol in the
automaton’s input alphabet. If the symbol is not yet in the
automaton’s input alphabet then it is added to the
automaton’s input alphabet.

get_stack_symbol Get a symbolic representation for a named stack symbol. If
the named symbol is not yet in the automaton’s stack
alphabet then it is added to the automaton’s stack
alphabet.

get_start_state Returns the start state of the automaton as a value of type
state_type.

is_accept_state Returns true if a given state is an accepting state of the
automaton, and false otherwise.

is_in_input_alphabet Returns true is a value of type symbol_type is in the
automaton’s input alphabet.

num_accept_states Returns the number of accepting states of the automaton.

num_states Returns the number of states. This includes accepting
states.

28

7 FLTL API

Method Description

add_accept_state Takes in a value of type state_type and sets the state
represented by that value to be an accepting state in the
automaton.

add_state Create and return a new state.

add_stack_symbol Adds an automatically named symbol to the automaton’s
stack alphabet. The symbol created is returned as a value
of type symbol_type.

add_start_state Takes in a value of type state_type and sets the state
represented by that value to be a start state in the
automaton.

By default, there is always one start start. There can only
ever be one true start state.

Additional start states are added by inserting �-transitions
from the current start to those “pretend” start states.

Thus, states added as start states by this method are not
true start states; however, they behave as if they were. This
function embodies the allowance of multiple start states in
prior versions of Grail+. To actually change the single start
state of an automaton, one must use set_start_state.

num_states_capacity Returns the total capacity for states in this automaton. An
arbitrary total order is imposed on all states of the
automaton. When states are removed2, this results in
“holes” in the ordering that can be filled by new states.

It is often convenient to know the maximum possible
number of states in the automaton as the total ordering is
implemented in terms of the natural numbers.

num_symbols Returns the number of input symbols in this automaton’s
alphabet.

Note: � is considered a meta-symbol, despite having type
symbol_type, and is not counted in number returned by
this method.

num_transitions Returns the number of transitions in the automaton.

remove_accept_state Removes a state from the set of accepting states.

remove_transition Removes a transition from the automaton. This does not
affect states. As such, it is possible that this operation
results in orphaned states.

2
Currently, states cannot be removed; however, this function exists in anticipation of the ability to remove states.

29

7 FLTL API

Method Description

add_accept_state Takes in a value of type state_type and sets the state
represented by that value to be an accepting state in the
automaton.

add_state Create and return a new state.

add_stack_symbol Adds an automatically named symbol to the automaton’s
stack alphabet. The symbol created is returned as a value
of type symbol_type.

add_start_state Takes in a value of type state_type and sets the state
represented by that value to be a start state in the
automaton.

By default, there is always one start start. There can only
ever be one true start state.

Additional start states are added by inserting �-transitions
from the current start to those “pretend” start states.

Thus, states added as start states by this method are not
true start states; however, they behave as if they were. This
function embodies the allowance of multiple start states in
prior versions of Grail+. To actually change the single start
state of an automaton, one must use set_start_state.

search Return a value of type generator_type that is capable of
performing some form of pattern-matching search over the
objects of an �-NFA.

See section 8.3.3 for more information on this method.

set_start_state Change the current start state. This will not affect, nor will
it redirect any �-transitions added in as a result of prior
invocations of add_start_state.

As well as the above methods, PDA<AlphaT> exposes the following types:

alphabet_type The underlying type used to represent input symbols.

state_type Represents an arbitrary state of an �-NPDA.

symbol_type Represents an arbitrary input symbol of an �-NPDA.

symbol_buffer_type Represents a buffer for stack symbols when creating transitions that push multiple
symbols onto the stack.

transition_type Represents an arbitrary transition in an �-NPDA.

generator_type Represents a generator over objects known to the PDA<AlphaT> class. See section §8.3
for more information on generators.

30

8 Implementation Details

8.1 Reference Counting

All memory and state of the various supported FLOs is managed by the FLTL. One way in which the
memory is managed is by reference counting. Reference counting refers to a memory management technique
where the number of references to a particular object is always known. When the number of references to
an object reaches zero, the object can be safely deallocated. Reference counting can be implemented in
one of two ways:

1. To every object o which we want to apply reference counting, we associate another object Count(o)
to be o’s counter. Using o requires that the programmer operates on o indirectly through the pair
(Address(o), Address(Count(o))).

2. To every object o which we want to apply reference counting, we embed a counter object, o.Count,
within o. Using o requires that the programmer operators on o indirectly through Address(o).

Each approach cannot be universally applied: the former approach is appropriate when one wants to apply
reference counting to an arbitrary object of unknown type, the latter is sometimes appropriate when one
has total control over the implementation details of each object to which reference counting is applied.
Finally, reference counting is usually not appropriate in situations where its possible for counted objects
to refer to other counted objects in a cyclic fashion.

The FLTL uses the second method of implementing reference counting for CFG symbol strings, CFG
productions, �-NFA transitions, and �-NPDA transitions. Unlike CFG terminals/variables/symbols and
�-NFA/�-NPDA symbols/states, productions and transitions are aggregate objects that tie in to their
respective FLOs in ways that are not exposed to the casual programmer.

For example, a production is implemented by the template class fltl::cfg::Production<AlphaT>. This
class contains a counter member variable. The programmer doesn’t have direct access to this class, instead
they must go through fltl::cfg::OpaqueProduction<AlphaT>, which resolves to fltl::CFG<AlphaT>

::production_type. Operating on a value of type production_type indirectly affects the reference
counter of the addressed Production<AlphaT> type.

This indirection is necessary to allow one to do such things as operate on the values of a production, even if
the production has been removed from its grammar. At first, this seems absurd: why would one ever want
to operate on a deleted production? Often, an algorithm that operates on a CFG will remove productions
from some grammar, but also add in other productions that are in some way related to the now removed
productions. Having access to deleted productions allows us to access the related information in a safe
way.

Reference counting is also appropritate for more subtle reasons, as described in section §8.3.

31

8 Implementation Details

8.2 CFG Production Patterns

CFG production patterns are easily the most expressive tool in the FLTL. A single production pattern is
able to do the following:

• Determine whether or not a production has a specific form. Production patterns can contain bound
and unbound elements. Restrictions on both are imposed by the types of the objects used when
constructing a pattern. When a part of a pattern is unbound, it represents a variable that can take
on a value contained in a production. When a part of a pattern is bound, it represents a constraint
on the structure of the production that must be satisfied. Unbound pattern parts are prefixed by
C++’s ~ operator.

• Extract (also known as destructure) and bind the unbound parts of a production to local memory,
usually named by stack-allocated (local) variables.

Production patterns are an embedded domain-specific language (EDSL) within C++, where “words” of
the pattern language are instantiated into C++ by using specific combinations overloaded operators. The
following table gives several short examples of using patterns in-place. In the follwoing examples, cfg is
a value of type CFG<const char *> and P is a value of type production_type.

C++ Pattern Meaning

terminal_type a(cfg.get_terminal("a"));
if((cfg._ --->* cfg.__ + a + cfg.__). match(P)) {

/* ... */
}

Match a production P iff it contains the
terminal a in its right-hand side.

terminal_type a(cfg.get_terminal("a"));
variable_type S(cfg.get_start_variable ());
if((S --->* cfg.__ + a + cfg.__). match(P)) {

/* ... */
}

Match a production P of the form
S → αaβ where S is the start variable
and α and β are arbitrary strings of
symbols.

terminal_type a(cfg.get_terminal("a"));
variable_type V;
symbol_string_type alpha;
symbol_string_type beta;
if(((~V) --->* ~alpha + a + ~beta).match(P)) {

/* ... */
}

Match a production P of the form
V → αaβ where V is an arbitrary
variable and α and β are arbitrary
strings of symbols.
If P is matched then bind the values of
V to V, α to alpha, and β to beta.

terminal_type a(cfg.get_terminal("a"));
unsigned dot;
/* ... */
if((cfg._ --->* cfg.__(dot) + a + cfg.__). match(P)) {

/* ... */
}

Match a production P of the form
V → α • aβ where V is an arbitrary
variable, α and β are arbitrary symbol
strings, and the value of dot at the time
of matching the pattern determines the
offset of the •, and hence the length of
α.

32

8 Implementation Details

The CFG of Figure 8.2.1 describes the CFG production pattern EDSL. In the grammar, cfg represents
an instance of CFG<AlphaT> for some type AlphaT, and oT is a terminal representing an arbitrary object
o of type T.

Figure 8.2.1: Grammar for CFG Production Patterns

Pattern → LHS --->* RHS0

LHS → cfg._

→ oconst variable_type

→ (~ ovariable_type)

UnitOfKnownLength → oconst variable_type

→ oconst terminal_type

→ oconst symbol_type

→ oconst symbol_string_type

→ cfg._

→ cfg.__(ounsigned)

→ ~ ovariable_type

→ ~ oterminal_type

→ ~ osymbol_type

UnitOfUnknownLength → ~ osymbol_string_type

→ cfg.__

RHS0 → UnitOfKnownLength RHS1

→ UnitOfUnknownLength RHS2

RHS1 → + RHS0

→ �

RHS2 → + UnitOfKnownLength RHS1

→ �

The terminals of the above grammar have the following meanings in the context of a CFG production
pattern:

Terminal Sequence Description

cfg._ This represents an arbitrary symbol. A symbol is either a
variable/non-terminal or a terminal of the grammar on which we are
operating. This pattern component will successfully match against any
symbol, but will not bind the value of the symbol to anything.

(~ovariable_type) Similar to ~oT (see below), this represents an unbound variable object.
However, this unbound variable object (in the above grammar) is on
the left-hand side of --->*, which is a composition of the --

post-decrement and ->* member-pointed-to-by-object-pointed-to
operators, and as such requires additional parentheses in order to get
the right behavior given the operator precedence rules of C++.

33

8 Implementation Details

Terminal Sequence Description

cfg.__(ounsigned) This represents an arbitrary symbol string of length exactly o, where o
is an object of type unsigned. Like cfg.__, the substring matched is
never bound to any variable.

Note: the value of o is not passed by value. Instead, o is passed by
reference and a pointer to o is stored. As such, the value of o is
resolved each time the pattern is invoked. That is, as o changes, so
does the matching behavior of the pattern.

~oT If the object o has type T ∈ {symbol_type, variable_type,
terminal_type, symbol_string_type}, where T is non-const, then ~oT
represents an unbound object. Usually, a named memory location (C++
local variable) is used in place of o; however, an unnamed object of
non-const-qualified type is also satisfactory.

If P → αaβ is a production and a pattern is attempting to match the
remaining aβ of the right-hand side of the pattern against ~oT+ . . . then
the pattern will attempt to match β if:

• T is symbol_type

• T is variable_type and a is a variable/non-terminal.

• T is terminal_type and a is a terminal.

If a is successfully matched then o← a.

If T is symbol_string_type then all possible lengths of symbol strings
for o will be tried. For this reason, one cannot put two unbound
symbol strings as adjacent pattern parts as the first one will always
match the empty string. This constraint is communicated by means of
RHS0, RHS1, and RHS2, which can be interpreted as different states
of the right-hand side of a production pattern.

Similar to cfg.__(ounsigned), a pointer to o is stored in order to
perform this binding.

cfg.__ This represents an arbitrary symbol string of any length. This pattern
component will always match, even if one is attempting to match an
empty symbol string, and will never bind the matched string to
anything.

34

8 Implementation Details

Terminal Sequence Description

. . . +oT . . . The implied meaning of the overloaded infix + operator represents
pattern part concatenation. The actual meaning is pattern extension,
as no real concatenation is being done behind the scenes.

The + operator can only be used on the right-hand side of --->*.
Outside of patterns, the + operator has the explicit meaning of
concatenation. Thus, for the pattern A--->* a + b + c + d, the
subtle change of A--->* a + (b + c) + d represents a different
pattern that behaves differently and is potentially unsafe.

Figure 8.2.2: Example Production Pattern
terminal_type a(cfg.get_terminal("a"));
variable_type V;
symbol_string_type alpha;
unsigned dot;

/* ...*/

pattern_type p((~V) --->* ~alpha + a + cfg._ + cfg.__(dot));

/* ... */

At compile time, the type of a production pattern contains a left-leaning tree of type tags. For example,
the type tree associated with the pattern p in Figure 8.2.2 is shown in Figure 8.2.3.

Figure 8.2.3: Type Tag Tree of Figure 8.2.2

+

+

+

--->*

(~V)

unbound_

variable_

tag

~alpha

unbound_

symbol_

string_tag

a

terminal_

tag

cfg._

unbound_

symbol_tag

cfg.__(dot)

any_

symbol_

string_of_

length_tag

35

8 Implementation Details

The type tree of Figure 8.2.3 stores type tags instead of the actual types of the pattern parts as the types
of the pattern parts can be deduced from the tags and because it simplifies the compilation process.

Each pattern is given a pointer to a static method of a template class. The template class parameterizes
the type tree. As a result of template instantiation, the compiler generates a static method for each leaf in
the type tree. Taken together, the invocations of these static methods can be inlined into a single pattern
matching and variable binding function.

In addition, each pattern also has a pointer to the first element in a 16 cell1 pointer array. Each cell of
the array has type void * (pointer to void). The following table summarizes the deduced2 types of the
type tags:

Type Tag Deduced Type Example

Pattern Part

symbol_tag symbol_type * s

terminal_tag terminal_type * t

variable_tag variable_type * v

symbol_string_tag symbol_string_type * str

any_symbol_tag cfg._

any_symbol_string_tag cfg.__

any_symbol_string_of_length_tag unsigned * cfg.__(dot)

unbound_symbol_tag symbol_type * ~s

unbound_terminal_tag terminal_type * ~t

unbound_variable_tag variable_type * ~v

unbound_symbol_string_tag symbol_string_type * ~str

Notice that the deduced types are all pointer types, as is consistent with the pattern parts being represented
by an array of pointers. This detail is responsible for the flexibility of all FLTL patterns, including CFG
production patterns: patterns don’t store values representing pattern parts, they store memory addresses,
and so when the values located at those memory addresses change, so does the behavior of the patterns.
Examples of how changing the behavior of a pattern are shown in Appendix: Converting an �-NPDA to
a CFG.

The inputs to a pattern matching function are: a pointer to a cell in the aforementioned pointer array,
a pointer to a symbol in a production’s right-hand side, and the number of symbols in the production’s
right-hand side that have yet to be matched. With this information, and the information that can be
inferred from the type tree, the pattern matching functions are able to check equality of symbols, bind

1
This is an artificial limit imposed on patterns. That is, the maximum number of pattern parts is 16.

2
The types of the array cells are void *; however, the values of those cells are pointers to heterogeneous objects. As such,

the types of those objects must be known when the untyped pointers are used. As mentioned, each leaf in the type tree

expands out to a pattern matching function. The type of the leaf, i.e. some type tag, is one of the formal parameters

to a pattern-matching class template and so the type is known to the pattern-matching function of that template class.

Pattern matching functions perform type casts from void * pointers to pointers of the types deduced by the type tags.

36

8 Implementation Details

arbitrary values to the locations in memory addressed by unbound pattern parts3, and prove that a pattern
cannot match a production by knowing the minimum number4 of symbols that a pattern must match.

8.3 Generators

Generators are the iteration mechanism of the FLTL. A generator is akin to a “for each . . . in . . .” loop in
a high-level language such as Python. Generators operate using the same overloaded operators as patterns
(see section §8.2). Unlike C++ standard library iterators, generators are not cursors into some collection,
although they do maintain a cursor. The following tables illustrate example generators for each FLO
supported by the FLTL.

8.3.1 CFG Generators

Suppose the following prelude is given:
CFG <AlphaT > cfg;
/* ... */
terminal_type t;
variable_type v;
production_type prod;
pattern_type pattern(/* ... */);

Further, suppose cfg is a representation of some CFG G = (V,Σ,→, S). Then the following functions
return a value of type generator_type with the following meanings:

Usage Description

cfg.search(~t) Returns a generator that matches all terminals of a
grammar. Each match of the generator changes the value
of t. The order in which terminals are visited is the order
in which they are added to the grammar.

It is safe to add new terminals to the grammar while the
generator is being used.

Formally, this generator represents ∀t ∈ Σ.

3
Those pattern parts prefixed by the ~ operator.

4
This information can be roughly inferred from the distinction between UnitOfKnownLength and

UnitOfUnknownLength in Figure 8.2.1. A lower bound on the minimum length can be computed at compile

time from the type tree. A sharper lower bound is known at runtime by taking advantage of the lower bound computed

at compile time and by resolving the lengths of bound symbol strings and unbound arbitrary symbol strings of a known

length.

37

8 Implementation Details

Usage Description

cfg.search(~v) Returns a generator that matches all variables of a
grammar. Each match of the generator changes the value
of v.

It is safe to add and remove variables from the grammar
while the generator is being used—even if the variable
being removed is the most recently matched variable.

Note: there are no guarantees that variables added while
the generator is matching will ever be seen by the
generator. In order to guarantee that all new variables are
matched, the generator should be rewound by calling its
rewind method.

Formally, this generator represents ∀v ∈ V .

cfg.search(~prod) Returns a generator that matches all productions of a
grammar. Each match of the generator changes the value
of prod.

It is safe to add and remove productions from the grammar
while the generator is being used—even if the production
being removed is the most recently matched production.

Note: there are no guarantees that productions added while
the generator is matching will ever be seen by the
generator. In order to guarantee that all new productions
are matched, the generator should be rewound by calling
its rewind method.

Formally, this generator represents ∀prod ∈→.

cfg.search(pattern) Returns a generator that matches and destructures all
productions that can be matched by pattern. This
generator makes the same guarantees as the production
generator.

Formally, this generator represents ∀prod ∈→ where prod
has the form matched by pattern.

cfg.search(~prod, pattern) Returns a generator that matches and destructures all
productions that can be matched by pattern. This
generator also binds every matched production to prod.
This generator makes the same guarantees as the
production generator.

Formally, this generator represents ∀prod ∈→ where prod
has the form matched by pattern.

38

8 Implementation Details

Terminal generators are implemented in a straightforward way: a cursor simply moves through the list
of terminals. This type of generator is simple because terminals, once added to a grammar, cannot be
removed.

Variable generators are slightly more interesting. Instantiation of a new generator does not actually assign
the constructed generator a “beginning” variable. This is because between the time that a generator is
created and the time that a generator is used, any number of modifications can be made to the CFG,
possibly leading to “holes” in the list of variables. Luckily, an instance of CFG<AlphaT> maintains infor-
mation about the “beginning” variable for use by generators, among other things. As such, when one first
attempts to use the generator (by calling its match_next method), the beginning variable is taken from
the associated CFG.

Production generators, and by extension pattern generators, are more complex as they interact with the
reference counting mechanisms of productions. Like variable generators, production generators are not
initialized with a beginning production, and instead take it from the associated CFG when it is needed.

The productions of a CFG are represented by an adjacency list, i.e. each variable has a linked list
of productions. Because productions are reference counted, it is possible for deleted productions to be
present in the list of a variable’s productions. As such, production generators must be able to skip over
deleted productions.

The beginning production being automatically calculated when the generator is first used implies that
each call to a generator’s match_next method will check to see if the production currently pointed to is
valid, and if not, will go look for a valid production. Thus, when match_next finds a valid production
for the current iteration, it actually advances the generator’s cursor to the next candidate production for
the next iteration. However, this requires that the generator hold a reference to this production lest the
production’s reference counter reach zero and yield undefined behavior for the generator.

This coupling between production/pattern generators and productions is responsible for allowing flexible
usage of productions.

8.3.2 �-NFA Generators

Suppose the following prelude is given:
NFA <AlphaT > nfa;
state_type source;
state_type sink;
symbol_type read;
transition_type trans;

Further, suppose that nfa is a representation of some �-NFA N = (Q,Σ, δ, q0 ∈ Q, F ⊆ Q). Then the
following functions return a value of type generator_type with the following meanings:

Usage Description

39

8 Implementation Details

Usage Description

nfa.search(~source) Returns a generator that matches all states of an
automaton. Each match of the generator changes the value
of source. The order in which states are visited is the
order in which they were added to the automaton.

It is safe to add new states to the automaton while the
generator is being used.

Formally, this generator represents ∀source ∈ Q.

nfa.search(~read) Returns a generator that matches all symbols of an
automaton. Each match of the generator changes the value
of read.

It is safe to add alphabet symbols from the automaton
while the generator is being used.

Note: there are no guarantees that symbols added while the
generator is matching will ever be seen by the generator. In
order to guarantee that all new symbols are matched, the
generator should be rewound by calling its rewind method.

Formally, this generator represents ∀read ∈ Σ.

nfa.search(~trans) Returns a generator that matches all transitions of an
automaton. Each match of the generator changes the value
of trans.

It is safe to add and remove transitions from the automaton
while the generator is being used—even if the transition
being removed is the most recently matched transition.

Note: there are no guarantees that transitions added while
the generator is matching will ever be seen by the
generator. In order to guarantee that all new transitions
are matched, the generator should be rewound by calling
its rewind method.

Formally, this generator represents
∀trans = (source, read, sink) such that source, sink ∈ Q,
read ∈ Σ ∪ {�}, and sink ∈ δ(source, read).

40

8 Implementation Details

Usage Description

nfa.search(

~source,

~read,

~sink

)

Returns a generator that matches and destructures all
transitions. This generator makes the same guarantees as
the transition generator.

Each match of this generator changes the values of source,
read, and sink. If, however, any of these variables are not
prefixed by the ~ operator then they represent constraints
on those transitions matched.

Formally, this generator represents ∀(source, read, sink)
such that source, sink ∈ Q, read ∈ Σ ∪ {�}, and
sink ∈ δ(source, read).

nfa.search(

~trans,

~read,

~symbol,

~sink

)

This is the same form of generator as the destructuring
transition generator; however, this generator will also bind
any matched transitions to trans. When using this form of
generator, the ~ prefix operator on the transition variable is
required.

The implementation of �-NFA generators uses similar techniques to those involved in CFG generators.

41

8 Implementation Details

8.3.3 �-NPDA Generators

Suppose the following prelude is given:
PDA <AlphaT > pda;
state_type source;
state_type sink;
symbol_type read;
symbol_type pop;
symbol_type push;
transition_type trans;

Further, suppose that nfa is a representation of some �-NPDA N = (Q,Σ,Γ, δ, q0 ∈ Q, F ⊆ Q). Then the
following functions return a value of type generator_type with the following meanings:

Usage Description

pda.search(~source) Returns a generator that matches all states of an
automaton. Each match of the generator changes the value
of source. The order in which states are visited is the
order in which they were added to the automaton.

It is safe to add new states to the automaton while the
generator is being used.

Formally, this generator represents ∀source ∈ Q.

pda.search(~read) Returns a generator that matches all symbols of an
automaton. This includes input and stack symbols. Each
match of the generator changes the value of read.

It is safe to add alphabet and stack symbols to the
automaton while the generator is being used.

Note: there are no guarantees that symbols added while the
generator is matching will ever be seen by the generator. In
order to guarantee that all new symbols are matched, the
generator should be rewound by calling its rewind method.

Formally, this generator represents ∀read ∈ Σ ∪ Γ.

42

8 Implementation Details

Usage Description

pda.search(~trans) Returns a generator that matches all transitions of an
automaton. Each match of the generator changes the value
of trans.

It is safe to add and remove transitions from the automaton
while the generator is being used—even if the transition
being removed is the most recently matched transition.

Note: there are no guarantees that transitions added while
the generator is matching will ever be seen by the
generator. In order to guarantee that all new transitions
are matched, the generator should be rewound by calling
its rewind method.

Formally, this generator represents
∀trans = (source, read, pop, push, sink) such that
source, sink ∈ Q, read ∈ Σ ∪ {�}, pop, push ∈ Σ ∪ Γ ∪ {�},
and (sink, push) ∈ δ(source, read, pop).

pda.search(

~source,

~read,

~pop,

~push,

~sink

)

Returns a generator that matches and destructures all
transitions. This generator makes the same guarantees as
the transition generator.

Each match of this generator changes the values of source,
read, pop, push, and sink. If, however, any of these
variables are not prefixed by the ~ operator then they
represent constraints on the transitions matched.

Formally, this generator represents
∀(source, read, pop, push, sink) such that source, sink ∈ Q,
read ∈ Σ ∪ {�}, pop, push ∈ Σ ∪ Γ ∪ {�}, and
(sink, push) ∈ δ(source, read, pop).

pda.search(

~trans,

~source,

~read,

~pop,

~push,

~sink

)

This is the same form of generator as the destructuring
transition generator; however, this generator will also bind
any matched transitions to trans. When using this form of
generator, the ~ prefix operator on the transition variable is
required.

The implementation of �-NPDA generators uses similar techniques to those involved in CFG generators.

43

8 Implementation Details

8.4 Deviations from Design Report

Some implementation details have deviated significantly from the design report. The following list sum-
marizes implementation deviations from the design report:

• Naming scheme of methods. Methods names are lower case, and the individual words of the method
names are separated by underscores. For example, remove_production, as opposed to the proposed
removeProduction. This naming scheme is consistent with the C++ standard library.

• Orderings of symbols, alphabets, variables. The design proposal stated that the various sub-objects
such as terminals, non-terminals, states, and symbols would be unordered. However, the currently
implementation imposes a total ordering on many of these objects. This change allows the afore-
mentioned objects to be used in ordered containers such as std::set, std::map, et al.

• Production patterns are implemented in a completely different way. For example, the design report
proposed that production patterns can contain Boolean conditions. This capability was rejected as
impractical early on in the implementation. Further, the design report proposed that production
patterns be implemented by specializing a data-structure independent querying language imple-
mented through meta-programming. The implementations of patterns currently makes heavy use of
C++ template meta-programming; however, each pattern type (e.g. transition pattern, production
pattern) must be completely specified and implemented within the scope of its respective FLO. A
general approach was first attempted; however, it proved to be overly complex and poorly specified.
For example, there was no clear protocol for how a pattern was to destructure some object according
to a pattern.

• The design report proposed the use of regular expressions for some tools. The original project
proposal required only some representation of regular languages. �-NFAs were chosen in favor of
regular expressions as it was not clear how to elegantly represent regular expressions whose alphabet
symbols can be objects of complex types.

44

9 Testing

Two forms of testing were performed:

1. A simple test suite was developed for automating the running of functions that test the behavior
of the various FLOs of the FLTL. The purpose of this test suite is to ensure that FLTL behaves as
expected. This is the most important set of tests as all of the algorithms are built on top of the FLTL.

The test suite includes hundreds of tests grouped into behavioral categories.

2. The second set of tests involved creating or using pre-existing descriptions of FLOs and then trans-
forming them with the Grail+ tools. Transformations on simple grammars were checked manually.
Transformations on larger grammars were tested in terms of other tools. These types of tests provide
anecdotal evidence of the correctness of the algorithms.

For example, to test the correctness of the cfg-to-cnf too, a grammar is converted to CNF by
means of the cfg-to-cnf tool and then words are checked for membership in the language of the
transformed grammar using the cfg-parse tool. Sequences of these sorts of tests were performed.
For example, cfg-to-pda, pda-to-cfg, followed by a series of tests with cfg-parse.

Extra effort was put into ensuring the correctness of cfg-parse, as it is used in the testing of
other tools.

The Grail+ tools were tested on a number of archictures with varying compilers. The most recent version
of Grail+ compiles with:

• Microsoft Visual Studio 2010’s C++ compiler, Visual C++.

• G++, the GNU C++ compiler.

• Clang++, the C++ compiler built on top of the low level virtual machine (LLVM).

• ICPC, the Intel C++ compiler.

45

10 Results

Together, Grail+ and the FLTL provide formal language researchers with powerful tools for performing
symbolic manipulations from their command lines and for creating programs that symbolically manipulate
FLOs. The FLTL mixes declarative and imperative programming styles so as to achieve the most straight-
forward implementation of an algorithm from a specification. Further, the FLTL manages all of its own
memory, releiving the programmer of this burden. Finally, by virtue of being implemented in C++, advanced
programmers who are more familiar with C++ will have access to the full breadth of all available libraries
implemented for the C and C++ programming languages1.

The FLTL represents a new direction for Grail+ and for programmers, researchers, and students who want
to manipulate FLOs. The FLTL deals with the details so that researchers can focus on their algorithms
in the language of their algorithms rather than in the language of the internal details of some FLO
implementations.

1
For example, if one were to make a graphical user interface (GUI) for Grail

+
then said person could use a cross-platform

GUI framework such as Qt for managing the interface and GraphV iz for generating graphical representations of the

various FLOs.

46

Bibliography

[1] John Aycock and R. Nigel Horspool. Practical earley parsing. Comput. J., 45(6):620–630, 2002.

[2] Steven Bird, Ewan Klein, and Edward Loper. Natural Language Processing with Python: Analyzing
Text with the Natural Language Toolkit. O’Reilly, Beijing, 2009.

[3] Jay Earley. An efficient context-free parsing algorithm. Commun. ACM, 13:94–102, February 1970.

[4] Sheila A. Greibach. A new normal-form theorem for context-free phrase structure grammars. J.
ACM, 12:42–52, January 1965.

[5] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata Theory, Lan-
guages and Computation. Pearson Addison-Wesley, 3. edition, 2007.

[6] Scott E. Hudson. Cup lalr parser generator in java, March 2011.

[7] Stephen C. Johnson. Yacc: Yet another compiler-compiler. Technical report, 1975.

[8] Robert C. Moore. Removing left recursion from context-free grammars. In Proceedings of the 1st
North American chapter of the Association for Computational Linguistics conference, pages 249–255,
San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[9] Julian Seward. Valgrind home, March 2011.

[10] Michael Sipser. Introduction to the Theory of Computation. International Thomson Publishing, 1st
edition, 1996.

47

Appendix: Converting an �-NPDA to a CFG

This section provides an example of how �-NPDA pattern-matching generators are used in one step of the
process of converting an �-NPDA into a CFG. This algorithm is described on page 120 of [10].

Let pda be a FLTL representation for an �-NPDA P = (Q,Σ,Γ, δ, q0, {qaccept}) where every transition of
pda either pushes a symbol onto the stack, pops a symbol off of the stack, or does not alter the stack.
That is, no transition simultaneously pushes a symbol onto and pops a symbol off of the stack. Let cfg

be a FLTL representation for the CFG that we are constructing from pda.

We are interested in sequences of transitions that begin by pushing a symbol t onto the stack and that
end by popping t off of the stack.

For each p, q, r, s ∈ Q, a, b ∈ Σ ∪ {�}, t ∈ Γ, if (r, t) ∈ δ(p, a, �) and (q, �) ∈ δ(s, b, t) then we would like to
add the production Apq → a Ars b to the grammar that we are constructing. Here, the variable Aij for
i, j ∈ Q represents all possible paths of computation that bring the �-NPDA from state i to state j on an
empty stack.

The following two pattern generator intializations represent the transition forms that we are searching for:
// states
state_type p;
state_type q;
state_type r;
state_type s;

// symbols
symbol_type a;
symbol_type b;
symbol_type t;

// if there is a transition from p to r that brings the PDA from
// an empty stack to a stack with t on it and reads a...
generator_type p_to_r_push(pda.search(

~p, // source state
~a, // read symbol
pda.epsilon(), // pop symbol
~t, // push symbol
~r // sink state

));

// ... and if there is a transition from s to q that pops t off
// of the stack when reading b
generator_type s_to_q_pop(pda.search(

~s,
~b,
t,
pda.epsilon(),
~q

));

First, notice that both patterns can be defined in the same scope, even though there is a clear dependency
in that the t of δ(s, b, t) depends on the assignment of t in (r, t) ∈ δ(p, a, �). This dependency is not

48

Appendix: Converting an �-NPDA to a CFG

important when we define our generators, it is only important when we use them. This is because the
transition patterns store pointers to p, a, t, r, s, b, and q. Thus, when t is given as a parameter to the
last invocation of pda.search, it is not passed by value but instead by reference, and the address of t is
then known to the pattern.

The following code demonstrates how to use the above patterns. Below, translate represents a function
that takes an �-NPDA alphabet symbol and converts it into an equivalent string of CFG terminals. We
must convert to a string of terminals because � is a symbol in an �-NPDA but a string in a CFG. Also,
A(p,q) for two states p and q represents the CFG variable Apq.
// add A_pq -> a A_rs b
for(; p_to_r_push.match_next ();) {

// t is bound by p_to_r_push , s_to_q_pop sees this update

for(s_to_q_pop.rewind ();
s_to_q_pop.match_next ();) {

cfg.add_production(
A(p, q),
translate(cfg , a) + A(r, s) + translate(cfg , b)

);
}

}

The outer loop is responsible for finding all transitions (r, t) ∈ δ(p, a, �), where pda.epsilon() is the only
constraint of the pattern. Each time such a transition is matched, r← r, t← t, p← p, and a← a.

The inner loop begins by rewinding the transition pattern generator. This must be done otherwise the
inner loop will only iterate over anything on the first iteration of the outer loop. At the point of executing
the inner loop, t has been bound by the destructuring and binding behavior of the pattern generator of
the outer loop.

The inner loop behaves in a similar way to the outer loop with the exception that the pattern generator
of the inner loop has two constraints: t as the symbol to be popped off the stack and pda.epsilon(), the
symbol to be pushed onto the stack.

When these constraints are all satisfied, a production is added by translating information from the �-NPDA
over to the CFG.

49

	List of Abbreviations
	Introduction
	History
	Goals and Motivations
	Architectural Overview
	Formal Language Template Library
	CFG, NFA, PDA and their Support Template Classes
	Helper Template Classes

	Grail+
	Algorithms
	Tools

	Command-Line Tools
	cfg-parse
	cfg-to-cnf
	cfg-to-gnf
	cfg-to-pda
	pda-intersect-nfa
	pda-to-cfg

	File Formats
	CFGs
	-NFAs
	-NPDAs

	FLTL API
	CFG<AlphaT>
	NFA<AlphaT>
	PDA<AlphaT>

	Implementation Details
	Reference Counting
	CFG Production Patterns
	Generators
	CFG Generators
	-NFA Generators
	-NPDA Generators

	Deviations from Design Report

	Testing
	Results
	Bibliography
	Appendix: Converting an -NPDA to a CFG

